Ramification of wild automorphisms of Laurent series fields
نویسندگان
چکیده
Let K K be a complete discrete valuation field with residue class alttext="k"> k encoding="application/x-tex">k , where both are of positive characteristic alttext="p"> p encoding="application/x-tex">p . Then the group wild automorphisms can identified under composition formal power series over no constant term and X"> X encoding="application/x-tex">X -coefficient alttext="1"> 1 encoding="application/x-tex">1 Under hypothesis that alttext="p greater-than b squared"> > b 2 encoding="application/x-tex">p > b^2 we compute first nontrivial coefficient th iterate form alttext="f equals upper X plus sigma-summation Underscript i greater-than-or-equal-to 1 Endscripts Subscript Baseline Superscript i"> f = + ? i ?<!-- ? </mml:munder> a encoding="application/x-tex">f = + \sum _{i \geq 1} a_iX^{b+i} As result, obtain necessary sufficient condition for an automorphism to “ encoding="application/x-tex">b -ramified”, having lower ramification numbers alttext="i n left-parenthesis f right-parenthesis midline-horizontal-ellipsis p right-parenthesis"> n ( stretchy="false">) ?<!-- ? encoding="application/x-tex">i_n(f) b(1 \cdots p^n) This is vast generalization Nordqvist’s 2017 theorem on alttext="2"> encoding="application/x-tex">2 -ramified series, as well analogous result minimally ramified which proved useful arithmetic dynamics in 2013 paper Lindahl linearization discs alttext="bold C p"> C encoding="application/x-tex">\mathbf {C}_p 2015 Lindahl–Rivera-Letelier optimal cycles nonarchimedean fields characteristic. The success our computation also promising progress towards Lindahl–Nordqvist’s 2018 bounding norm periodic points series.
منابع مشابه
Ramification of Wild Automorphisms of Laurent Series Fields
We study the structure of the Nottingham group N (Fp) of power series f ∈ X · Fp[[X]] with f (0) = 1 where p > 2 is prime, which is isomorphic to the group of wild automorphisms of Fp((X)). We concern ourselves with power series g ∈ N (Fp) with g 6= X for all m ≥ 1 (that is, power series of infinite order in N (Fp)), and we determine a necessary and sufficient criterion for such g ∈ N (Fp) havi...
متن کاملGrothendieck Rings of Laurent Series Fields
We study Grothendieck rings (in the sense of logic) of fields. We prove the triviality of the Grothendieck rings of certain fields by constructing definable bijections which imply the triviality. More precisely, we consider valued fields, for example, fields of Laurent series over the real numbers, over p-adic numbers and over finite fields, and construct definable bijections from the line to t...
متن کاملExtensions of Number Fields with Wild Ramification of Bounded Depth
Fix a prime number p, a number field K, and a finite set S of primes of K. Let Sp be the set of all primes of K of residue characteristic p. Inside a fixed algebraic closure K of K, let KS be the maximal p-extension (Galois extension with pro-p Galois group) of K unramified outside S, and put GS = Gal(KS/K). The study of these “fundamental groups” is governed by a dichotomy between the tame (S∩...
متن کاملcontrol of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولAutomorphisms of free groups . I Laurent Bartholdi
We describe, up to degree n, the Lie algebra associated with the automorphism group of a free group of rank n. We compute in particular the ranks of its homogeneous components, and their structure as modules over the linear group. Along the way, we infirm (but confirm a weaker form of) a conjecture by Andreadakis, and answer a question by Bryant–Gupta–Levin– Mochizuki.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2021
ISSN: ['2330-1511']
DOI: https://doi.org/10.1090/proc/15250